Type II Endoleaks, Left-Arm Complications, and Need of Revascularization after Left Subclavian Artery Coverage for Thoracic Aortic Aneurysms Endovascular Repair: A Systematic Review

Sergio Quilici Belczak, Erasmo Simão Silva, Rafael Klajner, Pedro Puech-Leão, and Nelson De Luccia, São Paulo, São Paulo, Brazil

Background: The status of the left arm, the need of revascularization, and the occurrence of type II endoleaks from the left subclavian artery (LSA) after intention LSA coverage for thoracic aortic aneurysm endovascular repair need to be better understood. This systematic review was developed for contributing with such issue.

Methods: Systematic literature review of studies published from January 2000 through December 2015 identified 7 studies comprising 201 patients submitted to elective endovascular repair for thoracic aortic aneurysms requiring intentional LSA coverage. Outcomes of interest included left-arm complications (ischemia, symptoms of claudication, and subclavian steal syndrome [SSS]) requiring postoperative revascularization of LSA, as well as endoleaks from the subclavian artery requiring postoperative embolization of LSA.

Results: Left-arm complication rate was 4.5% (9 patients), requiring postoperative revascularization of LSA in 1 case (0.5%) of SSS. Type II endoleaks from the subclavian artery requiring postoperative embolization of LSA were reported in 2 cases (1.0%).

Conclusions: Low-quality evidence suggests very low rates of arm complications with need of LSA revascularization and of type II endoleaks requiring embolization in elective endovascular treatment of thoracic aortic aneurysms with intentional coverage of LSA without prophylactic revascularization of LSA.

INTRODUCTION

Endovascular repair has become the preferred treatment for thoracic aortic aneurysms for selected cases since it was firstly reported in 1988\(^1,2\) and has been associated with decreased short-term morbidity and mortality when compared to open repair. This treatment modality can require partial or complete intentional coverage of the left subclavian artery (LSA), so that an adequate proximal landing zone can be achieved.

To avoid some downstream ischemic complications consequent to coverage of the LSA, some authors defend the prophylactic revascularization of the LSA before stent graft deployment,\(^3,4\) whereas others do not encourage such prophylactic procedure except for very selected cases.\(^5-9\) There are still others who observed low risks associated with simply covering the LSA and reserve revascularization of the subclavian artery only if left arm claudication, vertebrobasilar insufficiency, or other similar symptoms develop in patients after treatment.\(^10-12\)

Ischemic complications associated with coverage of the LSA include posterior circulation stroke, spinal cord ischemia (SCI), and left-arm ischemia or claudication. There are many articles\(^13-17\) and...
relevant systematic reviews18–22 dealing with stroke and SCI after LSA coverage, generally regarding thoracic pathologies all together. On the other hand, there are few studies and apparently no reviews focusing left arm malperfusion after coverage of the LSA during thoracic aortic aneurysms repair leading to the necessity of postoperative LSA revascularization.

Type II endoleaks from the LSA after thoracic endografting with coverage of LSA was considered benign at first, but more recently continued aneurysm sac expansion has been observed in the presence of this type of endoleaks.23 The rates of type II endoleaks range from 0% to about 8%,24 but its treatment has been successful in the great part of reported cases.24–26

In this systematic review, we analyze data from the literature about the status of the left arm and need of revascularization as well as the occurrence of type II endoleaks from the LSA and its treatment after LSA coverage for thoracic aortic aneurysms endovascular repair.

MATERIAL AND METHODS

Literature Search

The literature search was performed using MEDLINE, PubMed, Embase, and Cochrane databases for all relevant studies published in English between January 2000 and December 2015. The MeSH search headings “aorta, thoracic/aneurysms”, “TEVAR”, “subclavian artery coverage”, “complications”, and “endoleaks” were used in combination with the operators AND/OR. The search was extended by using the “related articles” function and the reference lists of the articles identified in the initial search. All abstracts were reviewed for a first selection of the eligible studies.

Review articles, case reports, and editorials were excluded. As to articles reporting the same sample, it were included the more recent ones. All full remaining articles were carefully reviewed. New exclusions included studies with only emergent/urgent procedures, reported results involving different thoracic aortic pathologies without separating the results related specifically to the aneurysms, and lack of description of left-arm complications.

Data Extraction

Data from each study were extracted by 2 reviewers regarding authors and year of publication, study design, number of patients studied, number of LSA covered, number of prophylactic revascularizations of LSA, and outcomes.

Outcomes included left-arm complications, as ischemia, symptoms of claudication, and subclavian steal syndrome (SSS) requiring postoperative revascularization of LSA, as well as endoleaks from the subclavian artery requiring postoperative embolization of LSA.

Data Analysis

Data were recorded and tabulated with Microsoft Excel software. Emphasis was placed in a descriptive report, due to the small number of studies and the low frequency of outcomes.

RESULTS

Following a rigorous study identification strategy (Fig. 1), a total of only 7 studies could be included for analysis, comprising 372 patients submitted to endovascular repair for thoracic aortic aneurysms (Table I). Procedures were elective in 79%. Intentional LSA coverage performed in 201 patients (54%) varied from 17.9% to 100.0% in the different studies. LSA was revascularized in 20/201 patients (10%) as a prophylactic procedure for selected cases in 4 studies (varying from 9.1% to 18.2%); in the other 3 studies, prophylactic revascularization of the LSA was not performed at all.

Four studies5,7,26,27 report only the results observed in patients underwent LSA coverage. According to Table II, 9 patients (4.5%) from 3 studies developed left-arm complications, including SSS (n = 1), mild effort claudication (n = 1), and symptoms of ischemia and/or claudication (n = 7). Only one among 201 patients (0.5%) had to be submitted to postoperative revascularization of LSA because of left-arm symptoms (SSS).

Type II endoleaks from the subclavian artery were observed and treated intraoperatively in 5 of a series of 23 patients (21.7%). Other 4 type II endoleaks from the subclavian artery were reported and
2 of them required postoperative embolization of LSA, totaling a rate of 1.0% in 201 patients treated with intentional LSA coverage (Table III).

DISCUSSION

This attempt to systematically review the literature regarding the necessity of postoperative revascularization of LSA because of left-arm complications or endoleaks from the subclavian artery preferentially in elective endovascular repair of thoracic aortic aneurysms with intentional coverage of LSA was quite a challenge but even so allowed us to compile some specific information from scientific production.

Most of the studies dealing with LSA coverage during thoracic endovascular aortic repair (TEVAR), with or without prior prophylactic revascularization of LSA, include different pathologies of the thoracic aorta as a whole and generally do not report results for each pathology. Other point is that outcomes most of the time refer to the main neurological complications including strokes and SCI, without emphasizing left-arm complications. In a relatively recent study, Klocker et al. studied specifically the functional status of the left arm in 138 patients (73 with LSA coverage) with different pathologies of the thoracic aorta, and only 1 patient treated for a degenerative aneurysm required secondary revascularizations of LSA due to left-arm ischemia, that is, 1.4% of the patients with LSA coverage, but this rate was not clear regarding the cases of aneurysms.

In a systematic review developed by Rizvi et al. including 51 studies published between 1996 and 2008 and comparing outcomes from TEVAR with and without LSA coverage, 9.5% of the patients with LSA coverage had reported left-arm complications (ischemia, claudication, and SSS) against 2.0% of those without LSA coverage. Again, there is no clear information on the findings for each specific pathology of thoracic aorta, on the type of procedures (elective, emergent, and urgent), and on prophylactic LSA revascularization. However, these authors reported a baseline risk of arm ischemia of 2.0% in patients who underwent LSA coverage during TEVAR for aneurysm but is not informed if it required postoperative revascularization.

The rate of arm complications has been reported at 18.5% in patients with bilateral patent vertebrobasilar junctions treated without preventive SLA revascularization in the management of different thoracic aortic pathologies and at 36% in endovascular repair of traumatic descending thoracic aortic transection. In 201 patients submitted to endovascular repair for thoracic aortic aneurysms with LSA
coverage reported in the studies included in this review, the rate of arm complications was 4.5%. Maybe such divergent rates could be result of mixing findings regarding different pathologies. The way how authors consider an arm complication to be reported can also influence such divergent rates. In a study involving 111 patients electively submitted to SLA coverage without revascularization (most of them treated for a type B dissection), Si et al. applied a linear model for preoperative characteristics, intraoperative LSA coverage, and postoperative symptoms and could conclude that arm ischemia may be associated not only with LSA coverage but also with personal cardiac function.

In this review, we were not able to establish any association between prophylactic revascularization of LSA and arm complications. Anyway, considering the low frequency of arm complications (4.5%) and need of postoperative LSA revascularization (0.5%) in a set of patients mostly not submitted to prophylactic procedures, we can agree with the authors who recommend reserving revascularization of the subclavian artery for patients who develop important complications after TEVAR with LSA coverage in the treatment of aortic aneurysms.

Studies reporting the utility of prophylactic revascularization of the LSA before stent graft deployment do not effectively justify this prophylactic procedure, except for apparently accepting the myth that ischemic damage or symptoms are inevitable when the LSA ostium is covered.

Four of the studies here reviewed refer specifically to thoracic aortic aneurysms involving 347 patients. Intentional LSA coverage was performed in 188 (54.2%) patients, and only in 20 (5.8%) patients, LSA was prophylactically revascularized. Postoperative revascularization due to arm complications was not necessary for any patient.

Based on their findings and on the accumulating literature, Galili et al. understood that prophylactic revascularization prior to endovascular repair of thoracic aortic aneurysms should be emphatically reserved to selected cases, especially when the coverage of the descending aorta is extensive because the risk of paraplegia increases without the prophylactic revascularization of LSA. According to Baba et al., however, LSA revascularization cannot be established as preventive procedure neither for SCI and stroke because the evidence found is still unclear and has been performed more often than necessary.

In the set of patients here analyzed, 1.0% needed secondary intervention of LSA due to type II endoleaks from the subclavian artery, but these findings were not discussed by the authors. The fact is that

<table>
<thead>
<tr>
<th>Study</th>
<th>Left-arm complications</th>
<th>Postoperative revascularization of LSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiesenhausen et al., 2003</td>
<td>1 33.3</td>
<td>1 33.3</td>
</tr>
<tr>
<td>Rehders et al., 2004</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Melissano et al., 2005</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Caronno et al., 2006</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Galli et al., 2007</td>
<td>1 9.1</td>
<td>0 0</td>
</tr>
<tr>
<td>Chad Hughes et al., 2010</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Baba et al., 2015</td>
<td>7 5.8</td>
<td>0 4.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Endoleaks (II)</th>
<th>Need of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiesenhausen et al., 2003</td>
<td>0 0</td>
<td>— —</td>
</tr>
<tr>
<td>Rehders et al., 2004</td>
<td>0 0</td>
<td>— —</td>
</tr>
<tr>
<td>Melissano et al., 2005</td>
<td>5 21.7</td>
<td>5 20.0</td>
</tr>
<tr>
<td>Caronno et al., 2006</td>
<td>0 0</td>
<td>— —</td>
</tr>
<tr>
<td>Galli et al., 2007</td>
<td>0 0</td>
<td>— —</td>
</tr>
<tr>
<td>Chad Hughes et al., 2010</td>
<td>1 3.3</td>
<td>1 3.0</td>
</tr>
<tr>
<td>Baba et al., 2015</td>
<td>3 2.4</td>
<td>1 0.8</td>
</tr>
</tbody>
</table>
reintervention of LSA seems to be rather a consequence of endoleaks from subclavian artery than of left-ARM complications. Peterson et al.24 reported their experience with endovascular repair of type II endoleaks associated with a covered LSA after thoracic endovascular aortic repairs. They reported a rate of 7.6% of postoperative type II endoleaks from LSA in 66 patients with different thoracic pathologies, which is very higher than the 2.0% observed in this review emphasizing aneurysms repair.

An important limitation to this study is the lack of a substantial number of standardized studies clearly demonstrating and comparing arm complications in the endovascular repair of different thoracic aortic pathologies, with or without LSA coverage, with or without prophylactic revascularization of LSA, with or without necessity of a secondary intervention. Available studies refer to only level IV evidence.

Many studies do not detail clinical data, present heterogeneity in the type of intervention (elective, urgent, and emergent), and report the total prevalence of outcomes of interest without specifying the group in which these outcomes occurred, what results in an impossibility of good systematic reviews with more rigorous statistical analysis.

CONCLUSION

Low-quality evidence suggests very low rates of arm complications with the need of LSA revascularizations and of type II endoleaks requiring embolization in elective endovascular treatment of thoracic aortic aneurysms with intentional coverage of LSA without prophylactic revascularization of LSA.

REFERENCES